10–12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Lena Urmantseva

Enhancing Production Profiling with Fiber Optic Technology

Agenda

- Introduction
- Production monitoring when conventional PLT tools can't be used
 - Case study 1: Onshore gas well

10–12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

- Case study 2: Offshore HT/HP gas well
- Conclusions

Introduction

- Various applications:
 - Well integrity monitoring
 - Hydraulic fracturing
 - Borehole seismic
 - Production profiling

Enhanced Oil Recovery Projects Monitoring Onshore Fields Subsea Umbilicals & Risers

Slickline Deployed

Objective

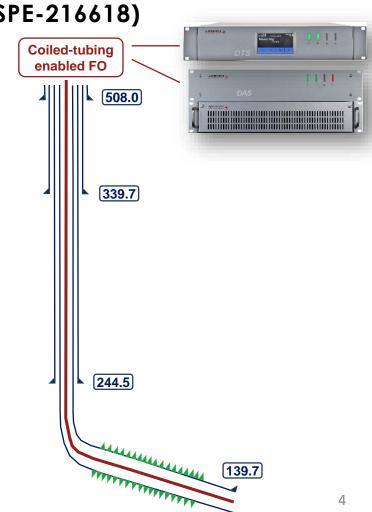
. . . .

٠

• To show that DFOS data can be used in an environment where conventional production logging is not possible.

Subsea Fiber-Optic Sensing Applications: How To Make It Happen SPE 10-12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

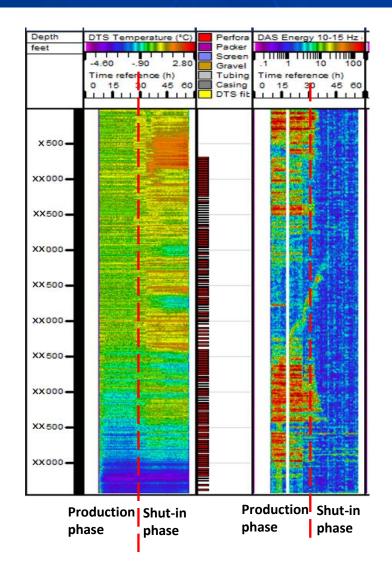
Case Study 1. Production monitoring in a gas well (SPE-216618)


- Background
- China, onshore gas field
- Horizontal well, inclination ~90-92 deg
- Well TD ~ 5 km
- Horizontal section ~1.2 km

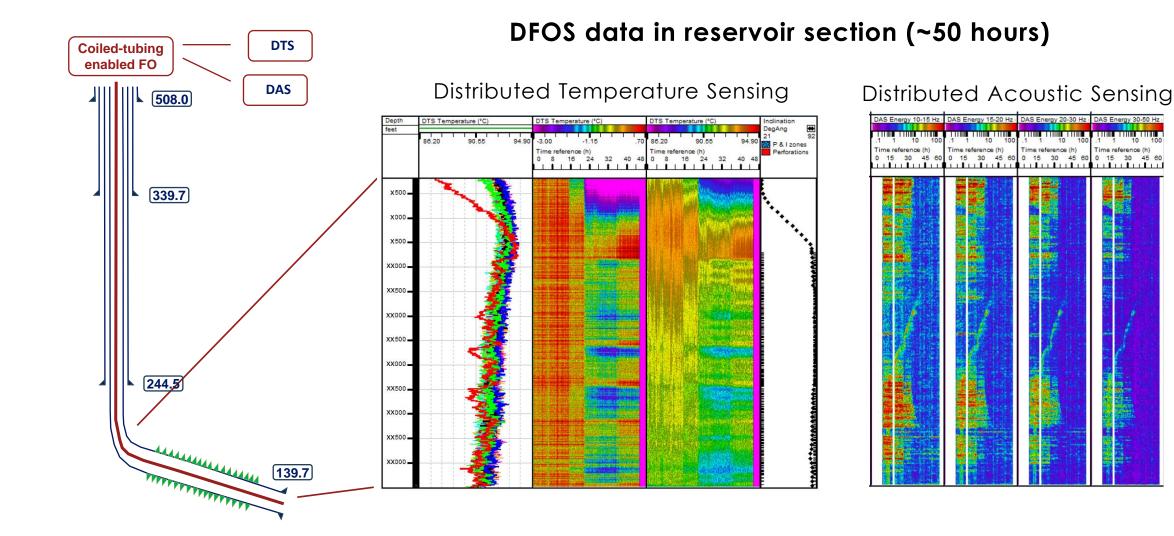
Challenge

 The Operator rejected use of conventional PLT tools

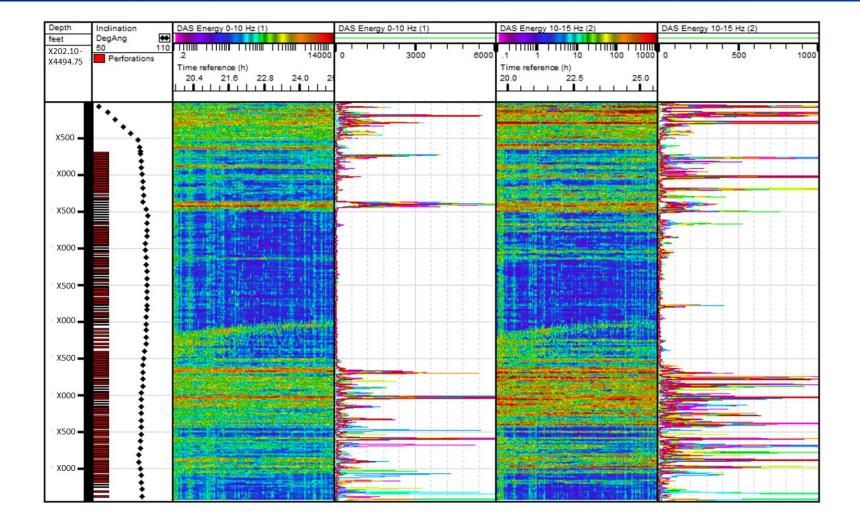
Solution


- Coiled tubing-enabled optical fibers
- ~50 hours of data acquired during different regimes

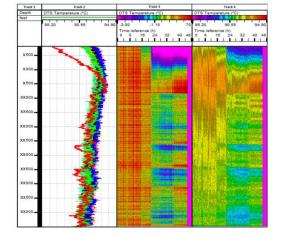
Job Execution

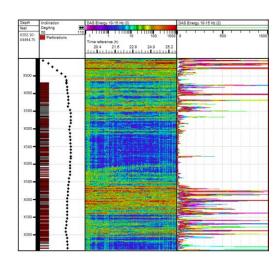

- FO-enabled coiled tubing, DTS and DAS data were acquired simultaneously
- ~50 hours of DTS and DAS survey during different regimes:
 - xx MMSCF/day flow rate 9 hrs
 - x MMSCF/day flow rate 7 hrs
 - x MMSCF/day flow rate 7 hrs
 - Shut-in

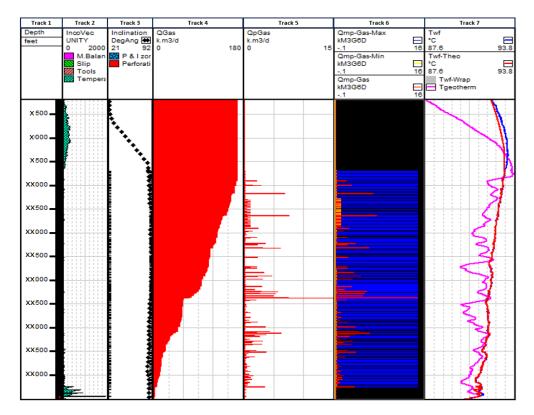
Society of Petroleum Enc

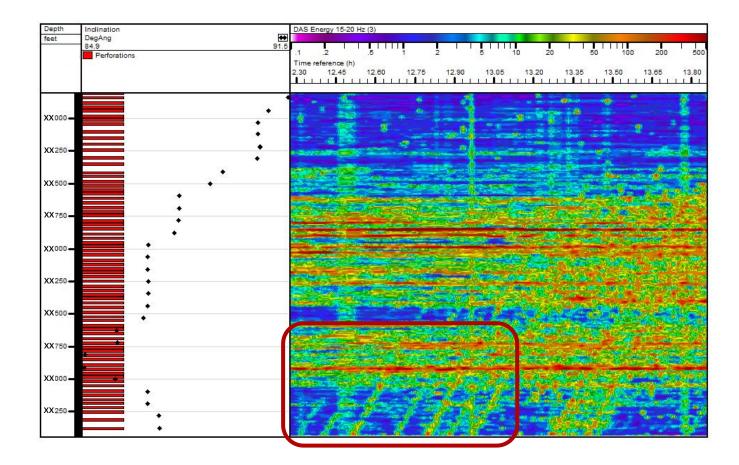


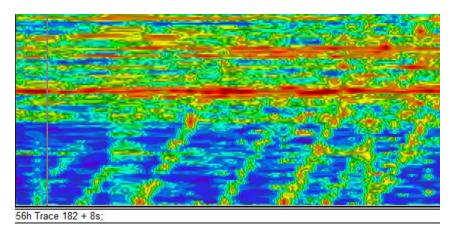
- DAS data in reservoir section
- DAS data allows • qualitative identification of producing zones


Stage	Perforation point (ft)	DAS Response	Stage	Perforation point (m)	DAS Response	Stage	Perforation point (m)	DAS Response
1	xx439			Xx705	v		Xx212	v
	Xx370			Xx672			Xx181	v
	Xx301		10	Xx635	v		Xx150	
2	Xx242			Xx602			Xx119	v
	Xx209	v		Xx569			Xx088	
	Xx177	v		Xx538	v	18	Xx050	v
	Xx145			Xx505	v		Xx019	
	Xx113			Xx472			Xx988	
	Xx080		11	Xx434			Xx956	v
3	Xx042	v		Xx410			Xx925	
	Xx009			Xx387			Xx894	
	Xx976	v		Xx364	v	19	Xx856	ν
	Xx945			Xx341			Xx825	
	Xx912			Xx318			Xx792	
	Xx880	v		Xx295			Xx761	v
	Xx842			Xx272			Xx728	
	Xx809	v	12	Xx234	v		Xx697	
	Xx776			Xx210		20	Xx659	v
	Xx745	v		Xx187			Xx628	
	Xx712			Xx164			Xx595	v
	Xx679	v		Xx141			Xx564	
5	Xx642	v		Xx118			Xx531	
	Xx609			Xx095			Xx500	v
	Xx576	v		Xx072		21	Xx463	v
	Xx542		13	Xx034			Xx430	
	Xx509			Xx001			Xx397	v
	Xx476			Xx969			Xx366	v
6	Xx438			Xx934			Xx333	v
	Xx406	v		Xx901			Xx300	v
	Xx373	v		Xx868		22	Xx262	v
	Xx342		14	Xx831			Xx230	
	Xx309	v		Xx798			Xx197	v
	Xx276	v		Xx765	v		Xx162	v
	Xx238	v		Xx734			Xx130	
	Xx205			Xx701			Xx097	
	Xx173	v		Xx668		23	Xx059	v
	Xx141	v	15	Xx631			Xx026	v
	Xx109			Xx599			Xx93	
	Xx076			Xx568			Xx62	v
8	Xx038	v		Xx537	v		Xx29	v
	Xx005	v		Xx506			Xx97	v
	Xx972	v		Xx475		24	Xx59	v
	Xx941	v	16	Xx437			Xx26	
	Xx908			Xx406			Xx93	v
	Xx876	v		Xx375			Xx59	v
9	Xx838	v		Xx344			xx26	
	Xx805	v		Xx312				
	Xx772	v		Xx281				
	Xx738		17	xx243				


 DAS data allows qualitative identification of producing zones


• For each perforation cluster the DAS response is verified




- DTS data preparation •
- Identification of ٠ producing zones
- Flow rates • computation
- Quantitative analysis of DTS data integrated with interpretation of DAS data.

- A small amount of fluids is • observed flowing up from below the logged interval
- It is possible to obtain the • velocities of this fluid movement

Case Study 1. Production monitoring (SPE-216618)

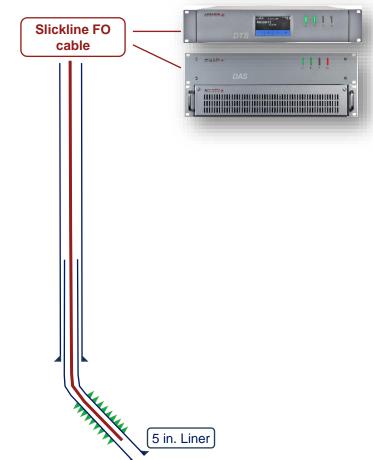
Summary:

- Risks related with utilizing of conventional PLT tools were mitigated by using CT with fiber optics
- DTS is a well-established tool for quantitative production profiling.
- To overcome potential limitations in DTS data analysis, combining DTS and DAS is suggested through post-processing interpretation software

Subsea Fiber-Optic Sensing Applications: How To Make It Happen SPE 10-12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Case Study 2. Production monitoring in a HTHP gas well (SPE-215512)

- Background
- North Sea, HP/HT gas field
- Deviated well, inclination ~40-45 deg
- Well TD ~ 5 km


Challenge

 Conventional PLT tools' ineffectiveness due to tar-like deposits in the tubing clogging the sensors and slickline tension constraints

• Slickline fiber optic cable

Technology Selection

- Culzean field in the Central North Sea •
 - Initial reservoir pressure 936 bar
 - Temperature 176 deg C
 - Thin-layered deposits
 - o Tar-liked deposits
 - High production rates
- Traditional production logs aborted due to clogged ٠ spinners from organic residue
- Increased risk of tool lift ٠
- Unsuccessful PLT since the start of production over 3 • years ago

Previous deployment attempt

Conventional PLT tool or Fiber Optic Line?

Surveillance option	Risk of clogging	Risk of tool string ejection	Flow rates	Cable rating	Cost
Conventional PLT toll string	High	High	Limited to 45 MMSCF/day	0.160" SL cable	Lowest cost
PLT tool string on FO line	High	Tools below perforation for flowing period	60 MMSCF/day	0.160" SL cable Not suitable	Medium
P&T gauges only on FO line			60 MMSCF/day	0.160" SL cable Not suitable	Low

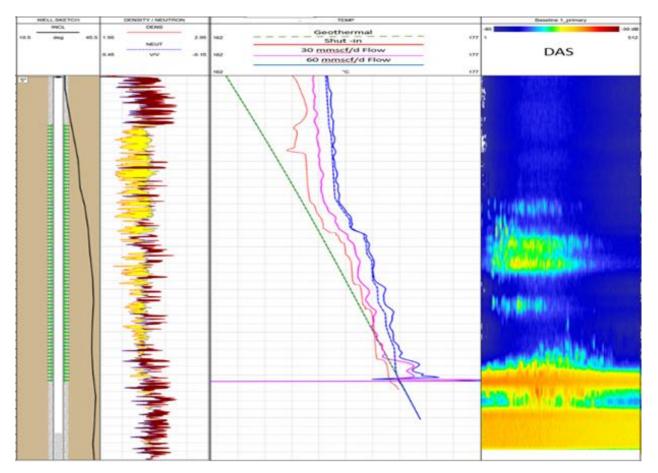
SPE vorkshop 🛯

10–12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Job Execution

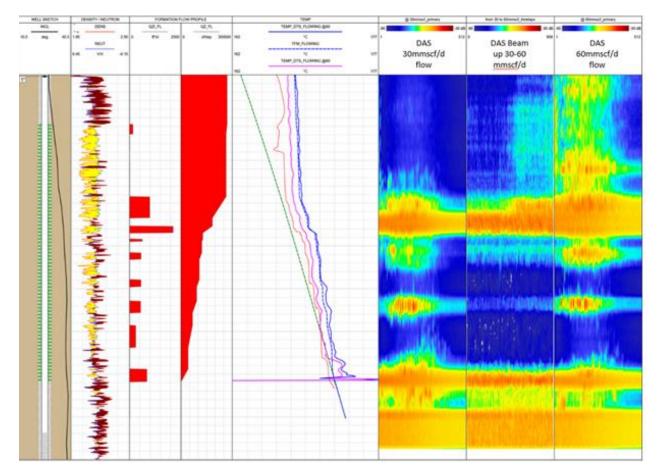
FO Slickline cable
0.160 in cable was replaced by 0.181 in cable

Double layer protection tube – 316L + Alloy 825
Strengthening wires
FIMT / 304 SS tube with optical fibres


High-Tension and High-Temperature DFOS Slickline

- 20 hours of DTS and DAS survey during different regimes:
 - Shut-in Baseline 1.5 hrs
 - 30 MMSCF/day flow rate 9 hrs
 - 60 MMSCF/day flow rate 7.5 hrs
 - Post Flowing shut-in 2 hrs

Job Execution



- DTS data for flow allocation for shut-in, 30 MMSCF/day and 60 MMSCF/day flow rates.
- DAS data during shut-in

Job Execution

- DTS thermal inversion performed to allocate relative flow volumes.
- DAS indicates changes in the • flow contribution with flow rate

Subsea Fiber-Optic Sensing Applications: How To Make It Happen SPE 10-12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Case Study 2. Production monitoring in a HTHP gas well (SPE-215512) Summary:

- By using slickline cable, risks associated with tool lift and wellbore debris were effectively mitigated, preventing the utilization of conventional PLT strings.
- Data from DAS and DTS were acquired in HT/HP well under multi-rate flowing conditions.
- First-ever Production Profile from this field under such conditions.

orkshop

Conclusions

- FO emerges as a reliable alternative when conventional PLT tools are not feasible
- FO can be deployed using various methods (slickline, coiled-tubing...)
- Fiber Optic Sensing technology advantages include:
 - Mitigation of risks associated with conventional tools.
 - Monitoring the entire wellbore in various operational states.
 - Obtaining results immediately post-survey.
 - Contribution to more efficient reservoir management.

n SPE Workshop

10–12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Acknowledgements

AP Sensing colleagues

ISP Team, thank you for the support in data interpretation

Diane Laurent

Alain Gysen

Caroline Godefroy

Yilin Mao

EXPRO Team, thank you for the opportunity to share DFOS deployment results in the North Sea

Stuart Berry

Michael Webster

10–12 April 2024 | JW Marriott Hotel, Rio de Janeiro, Brazil

Obrigada!

Thank you!